

US009410174B2

(12) United States Patent

Reichert et al.

(10) Patent No.: US 9,410,174 B2

(45) **Date of Patent:** Aug. 9, 2016

(54) DNA POLYMERASES WITH INCREASED 3'-MISMATCH DISCRIMINATION

(71) Applicant: Roche Molecular Systems, Inc.,

Pleasanton, CA (US)

(72) Inventors: Fred Reichert, San Leandro, CA (US);

Keith Bauer, San Rafael, CA (US); Thomas W. Myers, Dublin, CA (US); Nancy J. Schoenbrunner, Moraga, CA (US); Joseph San Filippo, Dublin, CA

(US)

(73) Assignee: Roche Molecular Systems, Inc.,

Pleasanton, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 44 days.

(21) Appl. No.: 14/254,316

(22) Filed: Apr. 16, 2014

(65) **Prior Publication Data**

US 2014/0227743 A1 Aug. 14, 2014

Related U.S. Application Data

- (62) Division of application No. 13/162,661, filed on Jun. 17, 2011, now Pat. No. 8,735,120.
- (60) Provisional application No. 61/356,279, filed on Jun. 18, 2010.

(51)	Int. Cl.	
	C12N 9/00	(2006.01)
	C12P 19/34	(2006.01)
	C12N 9/12	(2006.01)
	C12O 1/68	(2006.01)

(52) U.S. Cl.

(2015.11)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0148891 A1 6/2009 Bauer et al.

FOREIGN PATENT DOCUMENTS

WO 2008/034110 A2 3/2008 WO 2008/046612 A1 4/2008 WO 2009/010251 A2 1/2009

OTHER PUBLICATIONS

Gilje et al., "High-Fidelity DNA Polymerase Enhances the Sensitivity of a Peptide Nucleic Acid Clamp PCR Assay for K-ras Mutations" *Journal of Molecular Diagnostics*, vol. 10, No. 4, pp. 325-331 (2008).

Summerer et al., "Enhanced Fidelity in Mismatch Extension by DNA Polymerase through Directed Combinatorial Enzyme Design", *Angew Chem Int Ed Engl*, vol. 44, No. 30, pp. 4712-4715 (2005). Exner, Thomas E.; "Insights into the high fidelity of a DNA through the combinatorial Combinat

polymerase I mutant"; 2009 Journal of Molecular Modeling, vol. 15, No. 10, pp. 1271-1280.

H. Guo et al., "Protein Tolerance to Random Amino Acid Change", PNAS 101(25): 9205-9210, Jun. 2004.

Kermekchiev, Miko B. et al.; "Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples"; 2009, *Nucleic Acids Research*, vol. 37, No. 5, pp. 1-14.

Kranaster, Ramon et al.; "One-step RNA pathogen detection with reverse transcriptase activity of a mutated thermostable *Thermus aquaticus* DNA"; 2010, *Biotechnol.*, *J.*, vol. 5, pp. 224-231.

Ngo et al. in the Protein Folding Problem and Tertiary Structure Prediction, 1994, Merz et al. (ed.), Birkhauser, Boston, MA, pp. 433 and 492-495.

Ong, Jennifer L. et al.; "Directed Evolution of DNA Polymerase, RNA Polymerase and Reverse Transcriptase Activity in a Single Polypeptide"; 2006, *J. Mol. Biol.*, vol. 361, pp. 537-550.

Patel, et al., "Prokaryotic DNA Polymerase I: Evolution, Structure and "Base Flipping" Mechanism for Nucleotide", 2001, *J. Mol. Biol.*, vol. 308, pp. 823-837.

Sauter, Katharina B.M. et al.; "Evolving Thermostable Reverse Transcriptase Activity in a DNA Polymerase Scaffold"; 2006, *Angew. Chem. Int. Ed.*, vol. 45, pp. 7633-7635.

Vichier-Guerre, Sophie et al.; "A Population of Thermostable Reverse Transcriptases Evolved from Thermus aquaticus DNA Polymerase I by Phage Display"; 2006, *Angew. Chem. Int. Ed.*, vol. 45, pp. 6133-6137.

Park, et al., "Improvement of the 3'-5' Exonuclease Activity of *Taq* DNA Polymerase by Protein Engineering in the Active Site," Mol. Cells, vol. 7, No. 3 (1997), pp. 419-424.

Primary Examiner — Richard Hutson

(74) Attorney, Agent, or Firm — Kilpatrick Townsend & Stockton LLP

(57) ABSTRACT

Disclosed are mutant DNA polymerases having increased 3'-mismatch discrimination relative to a corresponding, unmodified polymerase. The mutant polymerases are useful in a variety of disclosed primer extension methods. Also disclosed are related compositions, including recombinant nucleic acids, vectors, and host cells, which are useful, e.g., for production of the mutant DNA polymerases.

12 Claims, 2 Drawing Sheets